Faculty highlight: Robert Macfarlane
As a graduate student and postdoc, AMAX Career Development Assistant Professor in Materials Science and Engineering Robert J. Macfarlane conducted groundbreaking research on how to make ordered crystal nanostructures by grafting oligonucleotides — short strands of artificial DNA that are chemically synthesized to have a specific, targeted structure — onto nanoparticles. These oligonucleotides are biologically inactive but nevertheless form the same double helical structure common in DNA of living organisms, which makes them rigid. They also terminate in “sticky ends” — short sections of DNA that act like tiny locks and keys to bind nanoparticles to each other. “With the DNA-based system, we can actually program in the structure with nanometer-scale precision in where we put particles in three dimensions,” Macfarlane says. His published papers show more than 20 different crystallographic symmetries, with hundreds of different crystal structures, including seven or eight geometries that have never been synthesized in either nanoparticle or atom-based crystals. The nanoparticles can consist...