“Sensorized” skin helps soft robots find their bearings

Thursday, February 13, 2020 - 00:10 in Physics & Chemistry

For the first time, MIT researchers have enabled a soft robotic arm to understand its configuration in 3D space, by leveraging only motion and position data from its own “sensorized” skin. Soft robots constructed from highly compliant materials, similar to those found in living organisms, are being championed as safer, and more adaptable, resilient, and bioinspired alternatives to traditional rigid robots. But giving autonomous control to these deformable robots is a monumental task because they can move in a virtually infinite number of directions at any given moment. That makes it difficult to train planning and control models that drive automation. Traditional methods to achieve autonomous control use large systems of multiple motion-capture cameras that provide the robots feedback about 3D movement and positions. But those are impractical for soft robots in real-world applications. In a paper being published in the journal IEEE Robotics and Automation Letters, the researchers describe a system of...

Read the whole article on MIT Research

More from MIT Research

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net