Researchers unveil mechanism to obtain metal 'nanoscrews'

Thursday, June 25, 2020 - 13:20 in Physics & Chemistry

Led by the Ikerbasque professor Luis Liz-Marzán, researchers at the Centre for Cooperative Research in Biomaterials CIC biomaGUNE have developed a mechanism by which gold atoms are deposited by means of chemical reduction onto previously formed gold nanorods to produce a quasi-helicoidal structure (the particles acquire chirality). This geometry enables these "nanoscrews" to interact with circularly polarized light much more efficiently than what is achieved with any other known object. These properties could lead to the detecting of biomolecules in a very selective and very sensitive way. What we have here is a versatile, reproducible mechanism that is scalable for the fabrication of nanoparticles with strong chiral optical activity. This piece of research has been published in the prestigious scientific journal Science.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net