Nanoearthquakes control spin centers in silicon carbide
Friday, September 4, 2020 - 09:30
in Physics & Chemistry
Researchers from the Paul-Drude-Institut in Berlin, the Helmholtz-Zentrum in Dresden and the Ioffe Institute in St. Petersburg have demonstrated the use of elastic vibrations to manipulate the spin states of optically active color centers in SiC at room temperature. They show a non-trivial dependence of the acoustically induced spin transitions on the spin quantization direction, which can lead to chiral spin-acoustic resonances. These findings are important for applications in future quantum-electronic devices and have recently been published in Physical Review Letters.