[Research Article] Molecular architecture of the Saccharomyces cerevisiae activated spliceosome

Thursday, September 22, 2016 - 14:55 in Physics & Chemistry

The activated spliceosome (Bact) is in a catalytically inactive state and is remodeled into a catalytically active machine by the RNA helicase Prp2, but the mechanism is unclear. Here, we describe a 3D electron cryomicroscopy structure of the Saccharomyces cerevisiae Bact complex at 5.8-angstrom resolution. Our model reveals that in Bact, the catalytic U2/U6 RNA-Prp8 ribonucleoprotein core is already established, and the 5′ splice site (ss) is oriented for step 1 catalysis but occluded by protein. The first-step nucleophile—the branchsite adenosine—is sequestered within the Hsh155 HEAT domain and is held 50 angstroms away from the 5′ss. Our structure suggests that Prp2 adenosine triphosphatase–mediated remodeling leads to conformational changes in Hsh155’s HEAT domain that liberate the first-step reactants for catalysis. Authors: Reinhard Rauhut, Patrizia Fabrizio, Olexandr Dybkov, Klaus Hartmuth, Vladimir Pena, Ashwin Chari, Vinay Kumar, Chung-Tien Lee, Henning Urlaub, Berthold Kastner, Holger Stark, Reinhard Lührmann

Read the whole article on Science NOW

More from Science NOW

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net