[Report] Ballistic miniband conduction in a graphene superlattice

Thursday, September 29, 2016 - 14:37 in Physics & Chemistry

Rational design of long-period artificial lattices yields effects unavailable in simple solids. The moiré pattern in highly aligned graphene/hexagonal boron nitride (h-BN) heterostructures is a lateral superlattice with high electron mobility and an unusual electronic dispersion whose miniband edges and saddle points can be reached by electrostatic gating. We investigated the dynamics of electrons in moiré minibands by measuring ballistic transport between adjacent local contacts in a magnetic field, known as the transverse electron focusing effect. At low temperatures, we observed caustics of skipping orbits extending over hundreds of superlattice periods, reversals of the cyclotron revolution for successive minibands, and breakdown of cyclotron motion near van Hove singularities. At high temperatures, electron-electron collisions suppress focusing. Probing such miniband conduction properties is a necessity for engineering novel transport behaviors in superlattice devices. Authors: Menyoung Lee, John R. Wallbank, Patrick Gallagher, Kenji Watanabe, Takashi Taniguchi, Vladimir I. Fal’ko, David Goldhaber-Gordon

Read the whole article on Science NOW

More from Science NOW

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net