[Report] Engineering extrinsic disorder to control protein activity in living cells

Thursday, December 15, 2016 - 14:02 in Biology & Nature

Optogenetic and chemogenetic control of proteins has revealed otherwise inaccessible facets of signaling dynamics. Here, we use light- or ligand-sensitive domains to modulate the structural disorder of diverse proteins, thereby generating robust allosteric switches. Sensory domains were inserted into nonconserved, surface-exposed loops that were tight and identified computationally as allosterically coupled to active sites. Allosteric switches introduced into motility signaling proteins (kinases, guanosine triphosphatases, and guanine exchange factors) controlled conversion between conformations closely resembling natural active and inactive states, as well as modulated the morphodynamics of living cells. Our results illustrate a broadly applicable approach to design physiological protein switches. Authors: Onur Dagliyan, Miroslaw Tarnawski, Pei-Hsuan Chu, David Shirvanyants, Ilme Schlichting, Nikolay V. Dokholyan, Klaus M. Hahn

Read the whole article on Science NOW

More from Science NOW

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net