Inside story: Chemical reactivity on the inner surface of single-walled carbon nanotubes
(PhysOrg.com) -- Historically, the interior surface of single-walled carbon nanotubes (SWNTs) has not been considered to be chemically reactive. Recently, however, researchers at the University of Nottingham School of Chemistry in the UK and the Ulm University Transmission Electron Microscopy Group in Germany demonstrated sidewall (inner surface) chemical reactions when they inserted catalytically active atoms of rhenium metal (Re) into these atomically thin cylinders of carbon. These reactions formed nanometer-sized hollow protrusions in three distinct phases (sidewall deformation and rupture, open nanoprotrusion formation, and stable closed nanoprotrusion) which the researchers imaged at the atomic level in real time at room temperature using Aberration-Corrected High-Resolution Transmission Electron Microscopy (AC-HRTEM).