Swimming upstream: Flux flow reverses for lattice bosons in a magnetic field
(PhysOrg.com) -- Matter in the subatomic realm is, well, a different matter. In the case of strongly correlated phases of matter, one of the most surprising findings has to do with a phenomenon known as the Hall response – an important theoretical and experimental tool for describing emergent charge carriers in strongly correlated systems, examples of which include high temperature superconductors and the quantum Hall effect. At Weizmann Institute of Science and California Institute of Technology, recent theoretical physics research into bosons interacting in a magnetic field has shown that, among other surprising effects, Hall conductivity – and therefore flux flow – undergo reversal. The scientists have concluded that their findings are immediately applicable to a wide range of phenomena in the realm of condensed matter physics.