Never mind the noise: Quantum entanglement allows channel information rate to exceed Shannon zero-error capacity

Wednesday, January 23, 2013 - 10:31 in Physics & Chemistry

(Phys.org)—As developed by Claude Shannon, information theory defines channel capacity as the maximum rate at which information can be sent through the channel. This capacity can be mathematically described using a graph associated with the channel. Specifically, a graph's Shannon zero-error capacity is the maximum rate at which messages can be sent through a noisy channel with zero probability of error. However, the Shannon capacity does not reflect the fact that on atomic scales, nature behaves according to quantum mechanics. Recently, scientists studying asymptotic behavior in entangled sender-receiver quantum systems at Centrum Wiskunde & Informatica, The Netherlands have identified families of graphs for which entanglement allows the Shannon capacity to be exceeded.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net