Novel features of helium-3 superfluidity discovered with new SQUID detector chip

Wednesday, May 22, 2013 - 09:30 in Physics & Chemistry

(Phys.org) —In order to study many complex phenomena, physicists seek to isolate them in potential wells or boxes with easily described forms and boundary conditions. These features in turn dictate various behaviors of the system under study like, for example, equilibrium states or resonances. In recent times it has emerged that constraining particles on extremely small scales can result in interesting new behaviors. Artificial atom systems, like quantum dots, can be fine-tuned in this way to specific color or conductivity according to their dimension. In some cases, even the phase of a material can be manipulated. A group of researchers has recently demonstrated the ability to precisely control the phase structure of superfluid helium-3 by manipulating the geometry of the container that holds it, and applying an appropriate magnetic field. Their new paper, recently published in Science, describes how they used an ultra-sensitive SQUID detector to readout the NMR...

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net