Metallic-to-semiconducting nanotube conversion greatly improves transistor performance

Tuesday, May 28, 2013 - 11:30 in Physics & Chemistry

(Phys.org) —Future transistors made of semiconducting single-walled carbon nanotubes (s-SWNTs) have the potential to perform much better than today's transistors. However, when SWNTs are grown in bulk, only about two-thirds of them are semiconducting, while the other one-third are metallic (m-SWNTs). Since m-SWNTs have a higher conductivity than s-SWNTs, their presence allows current leakage in a transistor's off state, which greatly decreases the transistor's on/off current ratio and overall performance. In a new study, scientists have demonstrated that simply decorating the m-SWNTs with copper oxide nanoparticles can convert them into s-SWNTs, resulting in a 205-fold increase in a transistor's on/off current ratio.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net