Defects on graphene electrode alter behavior of electrode-electrolyte interface
Friday, February 28, 2014 - 11:31
in Physics & Chemistry
Graphene, a single layer of carbon atoms, is an attractive electrode material for supercapacitor applications because of its high surface area. However, how the electrolytes interact with carbon material to store energy is still not well understood. Scientists at Pacific Northwest National Laboratory (PNNL) and Princeton University investigated how the surface chemistry of graphene affects the charge storage mechanism. They found that the defects on the graphene surface alter the liquid's interaction with the surface. The ionic liquid's cations, i.e., positive ions, aggregate near a defect, and the anions or negative ions are repelled by it, altering the molecular arrangement of the ionic liquid on the surface.