A theoretical model for vibrations in laptops provides design strategies for reducing hard drive failures
Wednesday, June 18, 2014 - 09:01
in Physics & Chemistry
Laptops have the advantages of being more versatile and portable than their desktop counterparts. But these attributes impose considerable demands on the electronic components in a laptop—particularly the hard drive. The magnetic disk inside a hard drive rotates at a rate of several thousand revolutions a minute. At the same time, a read/write head moves only a few nanometers above the disk surface to access information on the disk. At such high speeds, large vibrations can permanently damage the hard drive.