New math model examines mixing fronts in porous media flows
Wednesday, December 3, 2014 - 06:00
in Physics & Chemistry
Analyzing what happens where interfaces meet and mix is essential toward understanding and controlling fundamental mechanisms in both natural and industrial systems. By considering the reaction front of heterogeneous fluid flows in porous media, whose reaction rates are sharply influenced by compression and diffusion, researchers from Massachusetts Institute of Technology, Spanish National Research Council, Université de Rennes 1 (France), and Pacific Northwest National Laboratory developed a new model for predicting reaction front kinetics in these flows that provides a more complete assessment regarding the effects of many processes—stretching, coalescence, and fluid particle dispersion—on reactive transport dynamics.