Going places: Microtubule-mediated transport of inhibitory signals critical in stabilizing cell migration polarity

Tuesday, December 9, 2014 - 16:00 in Biology & Nature

(Phys.org)—Microtubules – tubular polymers of tubulin (a globular protein) that are a component of the cytoskeleton found throughout cell cytoplasm – are involved in a range of cellular functions, including the movement of secretory vesicles, organelles, and intracellular substances; cell division (mitosis and meiosis), including the formation of mitotic spindles; and cell polarity, which refers to spatial differences in cellular shape, structure and function. However, the nature of the role of microtubules in cell polarity has yet to be clarified. At the same time, cell migration plays an essential role in many important physiological processes, such as embryogenesis, wound healing, and immune responses; in engineering applications such as tissue regeneration; and, when defective, in causing severe problems such as birth defects, vascular disease and tumor metastasis. A key area for investigation in the linkage between cell polarity and cell migration is that directional cell migration requires a defined polarity, generated...

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net