Isolating and controlling qubits for quantum information processing

Thursday, January 7, 2016 - 08:36 in Physics & Chemistry

Harnessing quantum systems for information processing will require controlling large numbers of basic building blocks called qubits. The qubits must be isolated, and in most cases cooled such that, among other things, errors in qubit operations do not overwhelm the system, rendering it useless. Led by JQI Fellow Christopher Monroe, physicists have recently demonstrated important steps towards implementing a proposed type of gate, which does not rely on super-cooling their ion qubits. This work, published as an Editor's Suggestion in Physical Review Letters, implements ultrafast sensing and control of an ion's motion, which is required to realize these hot gates. Notably, this experiment demonstrates thermometry over an unprecedented range of temperatures—from zero-point to room temperature.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net