Behind the scenes of protostellar disk formation

Monday, July 11, 2016 - 08:31 in Earth & Climate

For a long time the formation of protostellar disks – a prerequisite to the formation of planetary system around stars – has defied theoretical astrophysicists: In a dense, collapsing cloud of gas and dust, the magnetic field would be dragged to the centre as well resulting in a braking effect. Hardly any rotationally supported disk can form this way, unless the tiny grains are removed from the cloud by growing or coagulating into bigger grains. This is the result from a new study published by researchers at the Max Planck Institute for Extraterrestrial Physics and other intuitions. The more realistic simulations now take into account non-ideal magneto-hydrodynamics and ionization chemistry to form a rotationally supported protostellar disk.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net