A swift, economical technique for imaging multicore fibers in real time
Multicore fibers (MCF) have attracted much attention in the fields of telecommunications, fiber lasers and medical endoscopes. MCF-based optical imaging techniques, which use a fiber bundle (each fiber acting like a discrete pixel to form the final pixelated image), are useful for investigating inside the human body in a minimally invasive way. Recently, there has been a growing interest in applying MCFs for high-power laser amplifiers and next-generation lensless endoscopes for in-vivo cancer diagnosis, which requires the capability of measuring and controlling the spatial, temporal and polarization states of the output light in MCFs in real-time. This makes the production and fabrication of a truly disposable, low-cost and accurate endoscopy probe possible.