Modeling morphology: Solid-solid phase transitions based on colloidal particle shape changes

Monday, June 5, 2017 - 08:32 in Physics & Chemistry

(Phys.org)—Phase transitions are transformations that occur between states of matter—that is, between solid, liquid, gas, and less commonly between gas and plasma. What may be surprising is that solid-solid phase transitions, which are essential in metallurgy, ceramics, earth science, reconfigurable materials, and colloidal matter, are the most common. (Examples of solid-solid phase transitions include transformations between the three primary crystalline states of pure iron and self-organizing anisotropic colloidal suspensions—that is, colloidal suspensions having different properties along different axes.) Despite their ubiquity, however, high pressure and/or high temperature contexts and the need to employ high-resolution imaging technology have made studying solid-solid phase transition intermediate transformational states significantly challenging. Recently, scientists at the University of Michigan have devised computer models demonstrating solid-solid phase transitions based on colloidal particle shape changes as the control variable, reporting both discontinuous and continuous transitions (i.e., those that require and do not require thermal activation, respectively). The...

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net