Machine learning predicts nanoparticle structure and dynamics

Tuesday, June 9, 2020 - 08:40 in Physics & Chemistry

Researchers at the Nanoscience Center and at the Faculty of Information Technology at the University of Jyväskylä in Finland have demonstrated that new distance-based machine learning methods developed at the University of Jyväskylä are capable of predicting structures and atomic dynamics of nanoparticles reliably. The new methods are significantly faster than traditional simulation methods used for nanoparticle research and will facilitate more efficient explorations of particle-particle reactions and particles' functionality in their environment. The study was published in a Special Issue devoted to machine learning in the Journal of Physical Chemistry on May 15, 2020.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net