Three-dimensional superlattice engineering with block copolymer epitaxy

Friday, June 19, 2020 - 09:31 in Physics & Chemistry

Three-dimensional (3-D) structures at the nanoscale are important in modern devices, although their fabrication with traditional top-down approaches is complex and expensive. Block copolymers (BCPs) that are analogous to atomic lattices can spontaneously form a rich variety of 3-D nanostructures to substantially simplify 3-D nanofabrication. In a new report on Science Advances, Jiaxing Ren and a research team in molecular engineering, chemical engineering and materials science at the University of Chicago, Technion-Israel Institute of Technology and the Argonne National Laboratory in the U.S. and Israel formed a 3-D superlattice using BCP micelles. They controlled the process using lithographically defined 2-D templates that matched a crystallographic plane in the 3-D superlattice. Using scanning transmission electron microscopy tomography, the team demonstrated precise control across the lattice symmetry and orientation. They achieved excellent ordering and substrate registration through 284-nanometer-thick films. To mediate lattice stability, the scientists tapped into molecular packing frustration of the...

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net