Nanoparticle-based computing architecture for nanoparticle neural networks
Scalable nanoparticle-based computing architectures have several limitations that can severely compromise the use of nanoparticles to manipulate and process information through molecular computing schemes. The von Neumann architecture (VNA) underlies the operations of multiple arbitrary molecular logic operations in a single chip without rewiring the device. In a new report, Sungi Kim and a team of scientists at the Seoul National University in South Korea developed the nanoparticle-based VNA (NVNA) on a lipid chip. The nanoparticles on the lipid chip functioned as the hardware—featuring memories, processors and output units. The team used DNA strands as the software to provide molecular instructions to program the logic circuits. The nanoparticle-based von Neuman architecture (NVNA) allowed a group of nanoparticles to form a feed-forward neural network known as a perceptron (a type of artificial neural network). The system can implement functionally complete Boolean logical operations to provide a programmable, resettable and scalable computing...