MIT researchers realize “ideal” kagome metal electronic structure

Thursday, December 12, 2019 - 12:10 in Physics & Chemistry

Since 2016, a team of MIT researchers consisting of graduate students Linda Ye and Min Gu Kang, associate professor of physics Joseph G. Checkelsky, and Class of 1947 Career Development Assistant Professor of Physics Riccardo Comin has focused on exploring the electronic structure that arises when atoms of iron (Fe) and tin (Sn) combine in repeating patterns that look like Japanese kagome baskets, or the Star of David. The electronic behavior of these crystalline “kagome” structures varies with the ratio of iron to tin atoms, usually 3-to-2 or 3-to-1. Earlier this year, the MIT team members and their colleagues reported that Fe3Sn2, a compound with a 3-to-2 ratio of iron to tin, generates Dirac fermions — a special kind of electronic state in which the spin of the electron and the orbit of the electron are coupled to each other. This special state of electron movement is protected by the topology, or geometric structure, of the...

Read the whole article on MIT Research

More from MIT Research

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net