A family of finite-temperature electronic phase transitions in graphene multilayers

Thursday, October 18, 2018 - 13:40 in Physics & Chemistry

Suspended Bernal-stacked graphene multilayers up to an unexpectedly large thickness exhibit a broken-symmetry ground state whose origin remains to be understood. We show that a finite-temperature second-order phase transition occurs in multilayers whose critical temperature (Tc) increases from 12 kelvins (K) in bilayers to 100 K in heptalayers. A comparison of the data with a phenomenological model inspired by a mean-field approach suggests that the transition is associated with the appearance of a self-consistent valley- and spin-dependent staggered potential that changes sign from one layer to the next, appearing at Tc and increasing upon cooling. The systematic evolution with thickness of several measured quantities imposes constraints on any microscopic theory aiming to analyze the nature of electronic correlations in this system.

Read the whole article on Science NOW

More from Science NOW

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net