Smarter multicore chips

Wednesday, February 18, 2015 - 00:30 in Mathematics & Economics

Computer chips’ clocks have stopped getting faster. To keep delivering performance improvements, chipmakers are instead giving chips more processing units, or cores, which can execute computations in parallel. But the ways in which a chip carves up computations can make a big difference to performance. In a 2013 paper, Daniel Sanchez, the TIBCO Founders Assistant Professor in MIT’s Department of Electrical Engineering and Computer Science, and his student, Nathan Beckmann, described a system that cleverly distributes data around multicore chips’ memory banks, improving execution times by 18 percent on average while actually increasing energy efficiency. This month, at the Institute of Electrical and Electronics Engineers’ International Symposium on High-Performance Computer Architecture, members of Sanchez’s group have been nominated for a best-paper award for an extension of the system that controls the distribution of not only data but computations as well. In simulations involving a 64-core chip, the system increased computational speeds by...

Read the whole article on MIT Research

More from MIT Research

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net