Moon's craters give new clues to early solar system bombardment
Take a cursory look at the moon, and it can resemble a pockmarked golf ball. The dimples and divots on its surface are testament that our satellite has withstood a barrage of impacts from comets, asteroids and other space matter throughout much of its history. Because the geological record of that pummeling remains largely intact, scientists have leaned on the moon to reconstruct the chaotic early days of the inner solar system. Now a team led by Brown University planetary geologists has produced the first uniform, comprehensive catalog of large craters on the moon that could shed light on the full-scale, planetary bombardment that characterized the inner solar system more than 4 billion years ago. In a paper appearing on the cover of Science, the team used data from the Lunar Orbiter Laser Altimeter, one of a suite of instruments aboard NASA's Lunar Reconnaissance Orbiter, to identify and map 5,185 craters that are 20 kilometers in diameter or larger.
From the crater count and analysis, the team, which includes scientists from the Massachusetts Institute of Technology and the NASA Goddard Space Flight Center, determined the moon's oldest regions are the southern near side and the north-central far side. The group also confirmed that the South Pole–Aitken Basin is the oldest basin, meaning that any samples from there could be invaluable to further understanding the moon and other bodies of the inner solar system.
In all, the findings "are telling us something about the infancy of the solar system," said James W. Head III, a planetary geologist at Brown and the paper's lead author. "It is clear we can find out and learn so much more from future missions, robotic or otherwise. There is so much to do."
A major finding deals with the stream of projectiles pinballing throughout the inner solar system in its earliest days. For years, the prevailing wisdom was that the moon was buffeted by a volley of space matter that held a steady ratio between larger and smaller objects, which planetary scientists refer to as "size-frequency distribution."
The bombardment activity has never been questioned. But in 2005, the size-frequency distribution was challenged. In a paper in Science, a group led by University of Arizona geologist Robert Strom hypothesized that the ratio of larger and smaller objects striking the moon had differed during its first billion years of existence. The Brown-led team's crater analysis lends added credence to that hypothesis. The researchers studied impact craters formed early in the moon's history (when major basins were created by large projectiles striking the surface) and compared them with those they knew were formed later (when objects struck lava flows that had covered these basins). They found that the oldest surfaces (located in the lunar highlands) bore crater markings indicating a greater ratio of larger projectiles. The group looked in particular at Orientale Basin, formed by a massive impactor about 3.8 billion years ago, and determined that this is approximately when the era of larger projectiles versus smaller projectiles ended.
The finding opens a set of intriguing questions for what was going on in the inner solar system leading up to roughly the time that Orientale Basin was formed, said Caleb Fassett, a postdoctoral researcher at Brown and a contributing author on the paper.
"We know the asteroid belt has been spinning off projectiles at a relatively constant rate for three and a half billion years," he said. "But now we go back earlier in the solar system's history, and suddenly things are completely different. That implies there's a different forcing to the asteroid belt. What has caused that different forcing is still not known."
The scientists think the change may have been caused by the gravitational pull on the asteroid belt exerted by larger planets such as Jupiter and Saturn as they settled into their orbits, a temporary abundance of comets, an unexplained change in the size of matter emanating from the asteroid belt, or something else.
The Lunar Orbiter Laser Altimeter — LOLA — measures the moon's surface topography at a vertical precision of 10 centimeters using laser pulses bounced off the lunar surface just 25 meters apart.
"The topography of the moon has been measured before, but this takes it to another level with the accuracy of data points and spatial resolution," said Maria Zuber, a planetary geologist at MIT who earned her doctorate at Brown in 1986 and is a contributing author to the paper.
Source: Brown University
Articles on the same topic
1 more sources ClickOther sources
- Moon Photos Shot from the Reconnaissance Orbiterfrom CBSNews - Science14 years ago
- New insights into the moon's rich geologic complexityfrom Science Daily14 years ago
- Moon Photos Shot from the Reconnaissance Orbiterfrom CBSNews - Science14 years ago
- Moon Photos Shot from the Reconnaissance Orbiterfrom CBSNews - Science14 years ago
- Moon Photos Shot from the Reconnaissance Orbiterfrom CBSNews - Science14 years ago
- New details of moon's surface revealedfrom UPI14 years ago
- Moon Hit With a Double Whammy of Impactsfrom Science NOW14 years ago
- NASA's LRO Exposes Moon's Complex, Turbulent Youthfrom NASA Jet Propulsion Laboratory14 years ago
- NASA’S LRO exposes moon’s complex, turbulent youthfrom Science Blog14 years ago
- Scientists report new insights into the moon's rich geologic complexityfrom Physorg14 years ago
- Moon's Face Reveals Extreme Cosmic Abusefrom Space.com14 years ago
- NASA's Lunar Reconnaissance Orbiter Gets New Moon Missionfrom Space.com14 years ago
- Exploration mission phase completed by NASA's lunar spacecraftfrom Physorg14 years ago
- NASA's lunar spacecraft completes exploration mission phasefrom Science Daily14 years ago
- ARTEMIS - the first Earth-Moon libration orbiterfrom Physorg14 years ago
- ARTEMIS: First Earth-Moon libration orbiterfrom Science Daily14 years ago